본문 바로가기
GMP 밸리데이션 정보

IQ OQ 가이드라인

by 차후 2022. 3. 23.
728x90
반응형

 

[국외 GMP 관련 규정] PIC/S 가이드라인(PI-040-1, CLASSIFICATION OF GMP DEFICIENCIES)

https://mfds.go.kr/brd/m_616/view.do?seq=23425&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1

 

[국외 GMP 관련 규정] PIC/S 가이드라인(PI-040-1, CLASSIFICATION OF GMP DEFICIENCIES) 상세보기|GMP 규제정보 |

[국외 GMP 관련 규정] PIC/S 가이드라인(PI-040-1, CLASSIFICATION OF GMP DEFICIENCIES) 첨부파일 첨부파일 전체 다운로드 --> PI_040_1_Guidance_on_Classification_of_Deficiencies.pdf 다운받기 미리보기 첨부파일 보기 첨부파

mfds.go.kr

01 PI_040_1_Guidance_on_Classification_of_Deficiencies.pdf
2.14MB

 

[국외 GMP관련규정] PIC/S GMP 부속서 (Annexes)

https://mfds.go.kr/brd/m_616/view.do?seq=23424&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1

 

[국외 GMP관련규정] PIC/S GMP 부속서 (Annexes) 상세보기|GMP 규제정보 | 식품의약품안전처

[국외 GMP관련규정] PIC/S GMP 부속서 (Annexes) 첨부파일 첨부파일 전체 다운로드 --> PE 009-14 GMP Guide (Annexes).pdf 다운받기 미리보기 첨부파일 보기 첨부파일 닫기

mfds.go.kr

PE+009-14+GMP+Guide+(Annexes).pdf
1.00MB

PIC/S GMP Annex15. Qualification & Validation(2018.07.01)

PE 009-14

pdf파일 137페이지

 

3. QUALIFICATION STAGES FOR EQUIPMENT, FACILITIES, UTILITIES AND SYSTEMS.
3.1 Qualification activities should consider all stages from initial development of the user requirements specification through to the end of use of the equipment, facility, utility or system. The main stages and some suggested criteria (although this depends on individual project circumstances and may be different) which could be included in each stag

e are indicated below:

 

3. 기기, 설비, 유틸리티 및 시스템의 자격 심사 단계
3.1 자격심사 활동은 사용자 요건 규격의 최초 개발부터 장비, 설비, 유틸리티 또는 시스템의 사용 종료까지 모든 단계를 고려해야 한다. 각 단계에 포함될 수 있는 주요 단계 및 제안된 기준(단, 이는 개별 프로젝트 상황에 따라 다를 수 있음)은 다음과 같습니다.


User requirements Specification (URS)
The set of owner, user, and engineering requirements necessary and sufficient to create a feasible design meeting the intended purpose of the system.

사용자 요건 사양(URS)
시스템의 의도된 목적에 부합하는 실현 가능한 설계를 작성하기에 충분하고 필요한 소유자, 사용자 및 엔지니어링 요건 세트.


User requirements specification (URS)
3.2 The specification for equipment, facilities, utilities or systems should be defined in a URS and/or a functional specification. The essential elements of quality need to be built in at this stage and any GMP risks mitigated to an acceptable level. The URS should be a point of reference throughout the validation life cycle.

 

사용자 요구 사양(URS)
3.2 장비, 설비, 유틸리티 또는 시스템에 대한 규격은 URS 및/또는 기능 규격에 정의되어야 한다. 이 단계에서 품질의 필수 요소를 짜넣고 GMP 리스크를 허용 가능한 수준으로 완화해야 합니다. URS는 검증 라이프 사이클 전체에 걸쳐 참조 포인트가 되어야 한다.


Design qualification (DQ)
The documented verification that the proposed design of the facilities, systems and equipment is suitable for the intended purpose.

설계자격(DQ)
제안된 시설, 시스템 및 장비의 설계가 의도한 목적에 적합하다는 문서화된 검증.


Design qualification (DQ)
3.3 The next element in the qualification of equipment, facilities, utilities, or systems is DQ where the compliance of the design with GMP should be demonstrated and documented. The requirements of the user requirements specification should be verified during the design qualification.

 

설계자격(DQ)
3.3 장비, 설비, 유틸리티 또는 시스템의 자격인정의 다음 요소는 설계와 GMP의 준수를 입증해야 하는 DQ이다.

문서화되어 있습니다. 사용자 요건 사양의 요건은 설계 자격 심사 중에 검증되어야 한다.

 


Factory acceptance testing (FAT) /Site acceptance testing (SAT)
3.4 Equipment, especially if incorporating novel or complex technology, may be evaluated, if applicable, at the vendor prior to delivery.
3.5 Prior to installation, equipment should be confirmed to comply with the URS/ functional specification at the vendor site, if applicable.
3.6 Where appropriate and justified, documentation review and some tests could be performed at the FAT or other stages without the need to repeat on site at IQ/OQ if it can be shown that the functionality is not affected by the transport and installation.
3.7 FAT may be supplemented by the execution of a SAT following the receipt of equipment at the manufacturing site.

 

공장 수용 테스트(FAT) / 사이트 수용 테스트(SAT)
3.4 특히 신규 또는 복잡한 기술을 통합하고 있는 경우, 납품 전에 공급업체에서 장비를 평가할 수 있다.
3.5 장비 설치 전에 공급업체 현장에서 URS/기능 규격에 부합하는지 확인해야 합니다(해당하는 경우).
3.6 적절하고 정당성이 있는 경우, 수송 및 설치에 의해 기능이 영향을 받지 않는다는 것을 증명할 수 있는 경우 IQ/OQ에서 현장에서 반복할 필요 없이 문서 검토 및 일부 테스트를 FAT 또는 기타 단계에서 수행할 수 있다.
3.7 FAT는 제조 현장에서 장비를 수령한 후 SAT를 실시하여 보충할 수 있다.


Installation Qualification (IQ)
The documented verification that the facilities, systems and equipment, as installed or modified, comply with the approved design and the manufacturer’s recommendations.

설치 자격(IQ)
설비, 시스템 및 기기가 설치 또는 변경되었을 때 승인된 설계 및 제조자의 권고를 준수하는지 문서화된 검증.

 

Installation qualification (IQ)
3.8 IQ should be performed on equipment, facilities, utilities, or systems.
3.9 IQ should include, but is not limited to the following:
i. Verification of the correct installation of components, instrumentation, equipment, pipe work and services against the engineering drawings and specifications;
ii. Verification of the correct installation against pre-defined criteria;
iii. Collection and collation of supplier operating and working instructions and maintenance requirements;
iv. Calibration of instrumentation;
v. Verification of the materials of construction.

 

설치 자격(IQ)
3.8 IQ는 장비, 시설, 유틸리티 또는 시스템에서 수행되어야 한다.
3.9 IQ는 다음을 포함해야 하며 이에 한정되는 것은 아닙니다.
i. 엔지니어링 도면 및 사양에 대한 부품, 계장, 기기, 배관 및 서비스의 올바른 설치 확인
ii. 사전 정의된 기준에 대한 올바른 설치 확인
iii. 공급업체의 운영 및 작업 지침 및 유지관리 요구사항 수집 및 대조
(4) 계기의 교정
v. 건축자재의 검증

 

엔지니어링 도면 및 규격문서

설치확인

운전 및 작업 지시문서

유지관리 기준의 수집 및 검토

계측 장치 교정

재질확인

 


Operational Qualification (OQ)
The documented verification that the facilities, systems and equipment, as installed or modified, perform as intended

throughout the anticipated operating ranges.

운용자격(OQ)
설비, 시스템 및 기기가 설치 또는 변경되었을 때 예상 작동 범위 전체에 걸쳐 의도한 대로 수행되는지 문서화된 검증.

 

Operational qualification (OQ)
3.10 OQ normally follows IQ but depending on the complexity of the equipment, it may be performed as a combined Installation/Operation Qualification (IOQ).
3.11 OQ should include but is not limited to the following:
i. Tests that have been developed from the knowledge of processes, systems and equipment to ensure the system is

operating as designed;
ii. Tests to confirm upper and lower operating limits, and/or “worst case” conditions.
3.12 The completion of a successful OQ should allow the finalisation of standard operating and cleaning procedures,

operator training and preventative maintenance requirements.

 

운용자격(OQ)
3.10 OQ는 일반적으로 IQ에 따르지만 기기의 복잡도에 따라서는 복합적인 설치/운영 자격(IOQ)으로 수행될 수 있다.
3.11 OQ는 다음을 포함해야 하지만 이에 국한되지 않는다.
i. 시스템이 설계대로 동작하고 있는지 확인하기 위해 프로세스, 시스템 및 장비에 대한 지식을 바탕으로 개발된 테스트
ii. 동작 상한 및 하한 및/또는 "최악의 경우" 조건을 확인하기 위한 테스트
3.12 OQ를 성공적으로 완료하면 표준 작동 및 청소 절차, 조작자 교육 및 예방 정비 요건의 완성이 가능해야 한다.

 


Performance Qualification (PQ)
The documented verification that systems and equipment can perform effectively and reproducibly based on the approved process method and product specification.

퍼포먼스 인정(PQ)
승인된 프로세스 방법 및 제품 사양을 기반으로 시스템 및 기기가 효과적이고 재현적으로 수행될 수 있는지 문서화된 검증.

 

Performance qualification (PQ)
3.13 PQ should normally follow the successful completion of IQ and OQ. However, it may in some cases be appropria

te to perform it in conjunction with OQ or Process Validation.
3.14 PQ should include, but is not limited to the following:
i. Tests, using production materials, qualified substitutes or simulated product proven to have equivalent behaviour under normal operating conditions with worst case batch sizes. The frequency of sampling used to confirm process control should be justified;
ii. Tests should cover the operating range of the intended process, unless documented evidence from the development phases confirming the operational ranges is available.

 

퍼포먼스 인정(PQ)
3.13 PQ는 일반적으로 IQ와 OQ를 성공적으로 완료해야 한다. 그러나 경우에 따라서는 OQ 또는 프로세스 검증과 함께 수행하는 것이 적절할 수 있습니다.
3.14 PQ는 다음을 포함해야 하지만 이에 국한되지 않는다.
i. 생산 재료, 적격 대체품 또는 시뮬레이션 제품을 사용한 테스트로, 최악의 경우 배치 크기를 가진 정상 작동 조건 하에서 동등한 동작을 하는 것으로 입증되었습니다. 프로세스 제어를 확인하기 위해 사용되는 샘플링 빈도는 정당화되어야 한다.
ii. 테스트는 개발 단계에서 사용 가능한 작동 범위를 확인하는 문서화된 증거가 없는 한 의도된 프로세스의 작동 범위를 포함해야 한다.


 

4. RE-QUALIFICATION
4.1 Equipment, facilities, utilities and systems should be evaluated at an appropriate frequency to confirm that they remain in a state of control.
4.2 Where re-qualification is necessary and performed at a specific time period, the period should be justified and the criteria for evaluation defined. Furthermore, the possibility of small changes over time should be assessed.

 

4. 재인정
4.1 장비, 설비, 유틸리티 및 시스템은 적절한 빈도로 평가하여 관리 상태를 유지하는지 확인해야 한다.
4.2 재인정이 필요하고 특정 기간에 수행될 경우 그 기간을 정당화하고 평가기준을 정의해야 한다. 또한 시간에 따른 작은 변화 가능성도 평가해야 한다.

 


 

의약품 제조 및 품질관리에 관한 규정 [별표13] 적격성 평가와 밸리데이션(2015.07.01)

설계 도면 확인, 설치 상태 확인

운전 및 사용 설명서

유지관리 요건 수집

교정 요건

구성 물품의 확인

 

https://www.youtube.com/watch?v=8IBkLvulsxQ&list=PL9gmGvEk371MWyWOuV1OY8zaL3iJMRz_-&t=23s

 

https://www.youtube.com/watch?v=rgsdpFVApxM&t=3741s

 

https://www.youtube.com/watch?v=gHOi_ioUPTc

 

https://www.youtube.com/watch?v=teNWzcQ3frk&list=PPSV

 

https://www.youtube.com/watch?v=zM0tmY5FQMo&list=PPSV

https://www.youtube.com/watch?v=7iBlB612uNE&list=PPSV

https://www.youtube.com/watch?v=D0jCiqju8J0&list=PPSV

https://www.transcat.com/kaye-validator-avs-advaced-validation-system

 

Kaye VALIDATOR AVS

Advanced Kaye Validator System

www.transcat.com

https://www.khidi.or.kr/board?menuId=MENU01872&siteId=SITE00024

 

의약품 관련 법령<의약품 인허가정보<글로벌제약산업정보-제약산업정보포털

 

www.khidi.or.kr

https://smartstore.naver.com/jun527300/products/5812456198?NaPm=ct%3Dl0asi2g0%7Cci%3D8ee9afbf8f66d978b497b424d1195d0ae01856e3%7Ctr%3Dslsl%7Csn%3D1069238%7Chk%3D897b1594a7159f21879e080e93473b02fb894326

 

Peaktech 소음측정기 소음계 층간소음 디지털 측정기 데이터로거 건설현장 8005 : 100세동안서대문점

휴대용측정기,소음측정기,디지털측정기,데이터로거,소음기,데시벨측정기,디지털소음계

smartstore.naver.com

 

 

 

터널멸균기

USP 36

1211

STERILIZATION AND STERILITY ASSURANCE OF COMPENDIAL ARTICLES

부속품의 멸균 및 불임성 보증

 

This informational chapter provides a general description of the concepts and principles involved in the quality control of articles that must be sterile. Any modifications of or variations in sterility test procedures from those described under Sterility Tests 71 should be validated in the context of the entire sterility assurance program and are not intended to be methods alternative to those described in that chapter.

이 장에서는 멸균해야 하는 물품의 품질 관리에 관련된 개념과 원칙을 전반적으로 설명합니다. 불임시험 71에 따라 기술된 절차와 달리 불임시험 절차의 수정 또는 변경은 전체 불임보증 프로그램의 맥락에서 검증되어야 하며 해당 장에 기술된 방법을 대체하기 위한 것이 아니다.


Within the strictest definition of sterility, a specimen would be deemed sterile only when there is complete absence of viable microorganisms from it. However, this absolute definition cannot currently be applied to an entire lot of finished compendial articles because of limitations in testing. Absolute sterility cannot be practically demonstrated without complete destruction of every finished article. The sterility of a lot purported to be sterile is therefore defined in probabilistic terms, where the likelihood of a contaminated unit or article is acceptably remote. Such a state of sterility assurance can be established only through the use of adequate sterilization cycles and subsequent aseptic processing, if any, under appropriate current good manufacturing practice, and not by reliance solely on sterility testing. The basic principles for validation and certification of a sterilizing process are enumerated as follows:

불임의 가장 엄격한 정의에서, 샘플은 생존 가능한 미생물이 완전히 존재하지 않는 경우에만 멸균된 것으로 간주됩니다. 그러나 이 절대적 정의는 현재 테스트의 한계로 인해 완성된 부록 기사 전체에 적용될 수 없습니다. 완제품이 완전히 파괴되지 않고서는 절대 불임이 실질적으로 입증될 수 없습니다. 따라서 멸균으로 간주되는 로트의 불임성은 오염된 단위 또는 물품의 가능성이 허용 가능할 정도로 희박한 확률론적 용어로 정의된다. 이러한 불임 보증 상태는 적절한 현재의 양호한 제조 관행이 있는 경우 적절한 멸균 사이클과 그에 따른 무균 처리를 통해서만 확립될 수 있으며 불임 테스트에만 의존해서는 안 된다. 멸균 프로세스의 유효성 및 인증을 위한 기본 원칙은 다음과 같습니다.


Establish that the process equipment has capability of operating within the required parameters.
Demonstrate that the critical control equipment and instrumentation are capable of operating within the prescribed parameters for the process equipment.
Perform replicate cycles representing the required operational range of the equipment and employing actual or simulated product. Demonstrate that the processes have been carried out within the prescribed protocol limits and finally that the probability of microbial survival in the replicate processes completed is not greater than the prescribed limits.
Monitor the validated process during routine operation. Periodically as needed, requalify and recertify the equipment.

프로세스 장비가 필요한 매개변수 내에서 작동할 수 있는지 확인합니다.
중요 제어 장비 및 계측기가 프로세스 장비에 대해 규정된 매개변수 내에서 작동할 수 있음을 입증합니다.
장비의 필요한 작동 범위를 나타내는 복제 사이클을 수행하고 실제 제품 또는 시뮬레이션 제품을 사용합니다. 프로세스가 규정된 프로토콜 한계 내에서 수행되었고 마지막으로 완료된 복제 프로세스에서 미생물이 생존할 확률이 규정된 한계보다 크지 않음을 입증합니다.
루틴 작동 중에 검증된 프로세스를 모니터링합니다. 필요에 따라 정기적으로 장비를 재인증하고 재인증합니다.


Complete the protocols, and document steps (1) through (4) above.
The principles and implementation of a program to validate an aseptic processing procedure are similar to the validation of a sterilization process. In aseptic processing, the components of the final dosage form are sterilized separately and the finished article is assembled in an aseptic manner.
Proper validation of the sterilization process or the aseptic process requires a high level of knowledge of the field of sterilization and clean room technology. In order to comply with currently acceptable and achievable limits in sterilization parameters, it is necessary to employ appropriate instrumentation and equipment to control the critical parameters such as temperature and time, humidity, and sterilizing gas concentration, or absorbed radiation. An important aspect of the validation program in many sterilization procedures involves the employment of biological indicators (see Biological Indicators 1035). The validated and certified process should be revalidated periodically; however, the revalidation program need not necessarily be as extensive as the original program.
A typical validation program, as outlined below, is one designed for the steam autoclave, but the principles are applicable to the other sterilization procedures discussed in this informational chapter. The program comprises several stages.

프로토콜을 완료하고 위의 (1) ~ (4) 단계를 문서화합니다.
무균 처리 절차를 검증하기 위한 프로그램의 원칙과 구현은 멸균 프로세스의 검증과 유사하다. 무균가공에서는 최종용량형태의 성분을 분리소독하여 무균상태로 조립한다.
멸균 프로세스 또는 무균 프로세스의 적절한 검증을 위해서는 멸균 및 클린룸 기술에 대한 높은 수준의 지식이 필요합니다. 멸균 파라미터의 현재 허용 가능한 한계를 준수하기 위해서는 온도와 시간, 습도, 멸균가스 농도 또는 흡수방사선과 같은 중요한 파라미터를 제어하는 적절한 계측기와 장비를 사용해야 합니다. 많은 멸균 절차에서 유효성 검사 프로그램의 중요한 측면은 생물학적 지표의 사용과 관련이 있다(Biological Indicators 1035 참조). 검증되고 인증된 프로세스는 정기적으로 재검증되어야 하지만, 재검증 프로그램이 원래 프로그램만큼 광범위할 필요는 없다.
아래에 요약된 전형적인 검증 프로그램은 증기 고압 멸균을 위해 설계된 프로그램이지만, 이 원칙은 이 정보 장에서 설명하는 다른 멸균 절차에 적용할 수 있다. 이 프로그램은 여러 단계로 구성되어 있습니다.


The installation qualification stage is intended to establish that controls and other instrumentation are properly designed and calibrated. Documentation should be on file demonstrating the quality of the required utilities such as steam, water, and air. The operational qualification stage is intended to confirm that the empty chamber functions within the parameters of temperature at all of the key chamber locations prescribed in the protocol. It is usually appropriate to develop heat profile records, i.e., simultaneous temperatures in the chamber employing multiple temperature-sensing devices. A typical acceptable range of temperature in the empty chamber is ±1 when the chamber temperature is not less than 121. The confirmatory stage of the validation program is the actual sterilization of materials or articles.

설치 검증 단계는 제어장치 및 기타 계측기가 적절하게 설계 및 보정되었는지 확인하기 위한 것입니다. 증기, 물, 공기와 같은 필수 유틸리티의 품질을 입증하는 문서가 파일에 있어야 합니다. 운전적격단계는 프로토콜에 규정된 모든 핵심 챔버 위치에서 빈 챔버가 온도 파라미터 내에서 기능하는지 확인하기 위한 것이다. 일반적으로 열 프로파일 기록, 즉 여러 개의 온도 감지 장치를 사용하여 챔버 내의 동시 온도를 개발하는 것이 적절합니다. 빈 챔버 내의 일반적인 허용 온도 범위는 챔버 온도가 121 이상일 때 ±1입니다. 검증 프로그램의 확인 단계는 물질 또는 물품의 실제 멸균 단계입니다.

 

This determination requires the employment of temperature-sensing devices inserted into samples of the articles, as well as either samples of the articles to which appropriate concentrations of suitable test microorganisms have been added, or separate BIs in operationally fully loaded autoclave configurations. The effectiveness of heat delivery or penetration into the actual articles and the time of the exposure are the two main factors that determine the lethality of the sterilization process. The final stage of the validation program requires the documentation of the supporting data developed in executing the program.

이 결정을 위해서는 적절한 농도의 테스트 미생물이 첨가된 물품 샘플뿐만 아니라 물품 샘플에 삽입된 온도 감지 장치를 사용하거나 완전히 로딩된 오토 클레이브 구성으로 별도의 BI를 사용해야 합니다. 열 전달 또는 실제 물품으로의 침투의 효과와 노출 시간은 멸균 과정의 치사성을 결정하는 두 가지 주요 요인입니다. 검증 프로그램의 마지막 단계에서는 프로그램 실행 시 개발된 지원 데이터를 문서화해야 합니다.


It is generally accepted that terminally sterilized injectable articles or critical devices purporting to be sterile, when processed in the autoclave, attain a 10–6 microbial survivor probability, i.e., assurance of less than 1 chance in 1 million that viable microorganisms are present in the sterilized article or dosage form. With heat-stable articles, the approach often is to considerably exceed the critical time necessary to achieve the 10–6 microbial survivor probability (overkill). However, with an article where extensive heat exposure may have a damaging effect, it may not be feasible to employ this overkill approach. In this latter instance, the development of the sterilization cycle depends heavily on knowledge of the microbial burden of the product, based on examination, over a suitable time period, of a substantial number of lots of the presterilized product.

멸균을 가장한 말기 멸균 주입 가능 물품 또는 중요 장치는 고압 멸균액에서 처리했을 때 10-6 미생물 생존 확률을 달성한다는 것이 일반적으로 인정된다. 즉, 멸균 물품 또는 용량 형태에 생존 가능한 미생물이 존재할 확률은 100만분의 1 미만이다. 열에 안정적인 기사의 경우, 10-6 미생물 생존 확률(과다)을 달성하는 데 필요한 임계 시간을 상당히 초과하는 경우가 많다. 그러나 광범위한 열 노출이 해로운 영향을 미칠 수 있는 기사에서는 이러한 과잉 살상 접근법을 사용하는 것이 가능하지 않을 수 있다. 후자의 경우, 멸균 사이클의 전개는 상당수의 사전 멸균 제품을 적절한 기간에 걸쳐 검사함으로써 제품의 미생물 부하에 대한 지식에 크게 좌우된다.


The D value is the time (in minutes) required to reduce the microbial population by 90% or 1 log cycle (i.e., to a surviving fraction of 1/10), at a specific temperature. Therefore, where the D value of a BI preparation of, for example, Bacillus stearothermophilus spores is 1.5 minutes under the total process parameters, e.g., at 121, if it is treated for 12 minutes under the same conditions, it can be stated that the lethality input is 8D. The effect of applying this input to the product would depend on the initial microbial burden. Assuming that its resistance to sterilization is equivalent to that of the BI, if the microbial burden of the product in question is 102 microorganisms, a lethality input of 2D yields a microbial burden of 1 (10 theoretical), and a further 6D yields a calculated microbial survivor probability of 10–6. (Under the same conditions, a lethality input of 12D may be used in a typical “overkill” approach.) Generally, the survivor probability achieved for the article under the validated sterilization cycle is not completely correlated with what may occur with the BI.

D 값은 특정 온도에서 미생물 집단을 90% 또는 1 로그 주기(즉, 생존 분율 1/10)까지 감소시키는 데 필요한 시간(분 단위)입니다. 따라서 예를 들어 Bacillus Stearothermophilus 포자의 BI 제제의 D값이 예를 들어 121에서 1.5분일 경우 동일한 조건에서 12분간 처리하면 사망률 입력이 8D라고 할 수 있다. 이 입력을 제품에 적용하는 효과는 초기 미생물 부담에 따라 달라집니다. 살균에 대한 내성이 BI와 동등하다고 가정할 때, 해당 제품의 미생물 부하가 102인 경우, 2D의 치사량 입력은 1의 미생물 부하(10 이론상)가 되고, 6D의 경우 계산된 미생물 생존 확률은 10~6이다(같은 조건에서 치사량 입력). 일반적인 "과잉" 접근법에 사용될 수 있습니다.) 일반적으로 검증된 멸균 사이클에서 물품에 대해 달성된 생존 확률은 BI에서 발생할 수 있는 것과 완전히 상관되지 않는다.

 

For valid use, therefore, it is essential that the resistance of the BI be greater than that of the natural microbial burden of the article sterilized. It is then appropriate to make a worst-case assumption and treat the microbial burden as though its heat resistance were equivalent to that of the BI, although it is not likely that the most resistant of a typical microbial burden isolates will demonstrate a heat resistance of the magnitude shown by this species, frequently employed as a BI for steam sterilization. In the above example, a 12-minute cycle is considered adequate for sterilization if the product had a microbial burden of 102 microorganisms. However, if the indicator originally had 106 microorganisms content, actually a 10–2 probability of survival could be expected; i.e., 1 in 100 BIs may yield positive results. This type of situation may be avoided by selection of the appropriate BI. Alternatively, high content indicators may be used on the basis of a predetermined acceptable count reduction.

따라서 유효한 사용을 위해서는 살균된 물품의 자연 미생물 부하보다 BI의 내성이 더 큰 것이 필수적이다. 그런 다음 최악의 경우를 가정하고 미생물 부하를 내열성이 BI와 동등한 것으로 취급하는 것이 적절하지만, 전형적인 미생물 부하 분리제 중 가장 내성이 강한 것이 이 종에 의해 나타나는 크기의 내열성을 보일 가능성은 낮다.EAM 살균 상기 예에서 미생물의 부하가 102인 경우 12분 주기는 멸균에 적합하다고 판단된다. 그러나 지표가 원래 106개의 미생물 함량을 가지고 있었다면 실제로 10-2의 생존 확률을 기대할 수 있었다. 즉, 100개의 BI 중 1개는 양성 결과를 얻을 수 있다. 이러한 상황은 적절한 BI를 선택하면 회피할 수 있습니다. 또, 소정의 허용 카운트 삭감에 근거해 고함유 인디케이터를 사용할 수도 있다.


The D value for the Bacillus stearothermophilus preparation determined or verified for these conditions should be reestablished when a specific program of validation is changed. Determination of survival curves (see Biological Indicators 1035), or what has been called the fractional cycle approach, may be employed to determine the D value of the biological indicator preferred for the specific sterilization procedure. The fractional cycle approach, may also be used to evaluate the resistance of the microbial burden. Fractional cycles are studied either for microbial count-reduction or for fraction negative achievement. These numbers may be used to determine the lethality of the process under production conditions. The data can be used in qualified production equipment to establish appropriate sterilization cycles. A suitable biological indicator such as the Bacillus stearothermophilus preparation may be employed also during routine sterilization. Any microbial burden method for sterility assurance requires adequate surveillance of the microbial resistance of the article to detect any changes, in addition to periodic surveillance of other attributes.

특정 유효성 검사 프로그램이 변경되면 스테아더모필루스균 제제의 D값을 다시 설정해야 한다. 생존곡선의 결정(Biological Indicators 1035 참조) 또는 분수주기 접근법이라고 불리는 것을 사용하여 특정 멸균 절차에 적합한 생물학적 지표의 D 값을 결정할 수 있다. 분할 주기 접근방식은 미생물 부담의 내성을 평가하기 위해 사용될 수도 있다. 부분 주기는 미생물 수 감소 또는 부분 음성 달성을 위해 연구된다. 이 수치를 사용하여 생산 조건 하에서 공정의 치사성을 확인할 수 있습니다. 이 데이터는 적격한 생산 장비에서 적절한 멸균 주기를 설정하기 위해 사용할 수 있습니다. 정기적인 멸균 중에도 바실러스 스테아로더모필러스 제제와 같은 적절한 생물학적 지시제를 사용할 수 있다. 불임 보증을 위한 미생물 부담 방법은 다른 속성의 정기적인 감시 외에 변화를 감지하기 위해 물품의 미생물 저항성에 대한 적절한 감시가 필요하다.


METHODS OF STERILIZATION

살균법


In this informational chapter, five methods of terminal sterilization, including removal of microorganisms by filtration and guidelines for aseptic processing, are described. Modern technological developments, however, have led to the use of additional procedures. These include blow-molding (at high temperatures), forms of moist heat other than saturated steam and UV irradiation, as well as on-line continuous filling in aseptic processing. The choice of the appropriate process for a given dosage form or component requires a high level of knowledge of sterilization techniques and information concerning any effects of the process on the material being sterilized.

본 장에서는 여과에 의한 미생물의 제거와 무균처리 지침 등 5가지 말단살균 방법을 설명한다. 그러나 현대 기술의 발달로 인해 추가 절차가 사용되게 되었다. 여기에는 고온에서의 중풍 성형, 포화 증기 및 UV 조사 이외의 습열 형태 및 무균 처리의 온라인 연속 충전이 포함됩니다. 특정 용량 형태 또는 성분에 적합한 공정을 선택하려면 멸균 기술에 대한 높은 수준의 지식과 멸균 재료에 대한 공정의 영향에 대한 정보가 필요합니다.

 

1. Steam Sterilization
The process of thermal sterilization employing saturated steam under pressure is carried out in a chamber called an autoclave. It is probably the most widely employed sterilization process.2 The basic principle of operation is that the air in the sterilizing chamber is displaced by the saturated steam, achieved by employing vents or traps. In order to displace air more effectively from the chamber and from within articles, the sterilization cycle may include air and steam evacuation stages. The design or choice of a cycle for given products or components depends on a number of factors, including the heat lability of the material, knowledge of heat penetration into the articles, and other factors described under the validation program (see above). Apart from that description of sterilization cycle parameters, using a temperature of 121, the F0 concept may be appropriate. The F0, at a particular temperature other than 121, is the time (in minutes) required to provide the lethality equivalent to that provided at 121 for a stated time. Modern autoclaves generally operate with a control system that is significantly more responsive than the steam reduction valve of older units that have been in service for many years. In order for these older units to achieve the precision and level of control of the cycle discussed in this chapter, it may be necessary to upgrade or modify the control equipment and instrumentation on these units. This modification is warranted only if the chamber and steam jacket are intact for continued safe use and if deposits that interfere with heat distribution can be removed.

압력 하에서 포화 증기를 사용하는 열 멸균 프로세스는 고압 멸균이라고 불리는 챔버에서 수행됩니다. 이것은 아마도 가장 널리 사용되는 멸균 프로세스일 것입니다.2 작동의 기본 원리는 멸균실의 공기가 포화 증기에 의해 변위되는 것이며, 통풍구 또는 트랩을 사용하여 이루어집니다. 챔버 및 물품 내에서 보다 효과적으로 공기를 이동시키기 위해 멸균 사이클은 공기 및 증기 배출 단계를 포함할 수 있다. 특정 제품 또는 구성요소에 대한 사이클의 설계 또는 선택은 재료의 열 내구성, 물품에 대한 열 침투 지식 및 검증 프로그램에 설명된 기타 요인(위 참조)을 포함한 여러 요소에 따라 달라집니다. 멸균 사이클 파라미터에 대한 설명과는 별도로 온도 121을 사용하여 F0 개념을 사용하는 것이 적절할 수 있다. F0은 121 이외의 특정 온도에서 121에 규정된 치사량과 동등한 치사율을 일정 시간 동안 제공하는 데 필요한 시간(분 단위)입니다. 현대식 오토클레이브는 일반적으로 수년 동안 사용되었던 구형 장치의 증기 감소 밸브보다 훨씬 더 반응성이 뛰어난 제어 시스템으로 작동합니다. 이 장에서 설명하는 사이클의 정밀도와 제어 수준을 달성하려면 이러한 장치의 제어 장비 및 계측기를 업그레이드 또는 수정해야 할 수 있습니다. 이러한 개조는 챔버와 스팀 재킷이 계속 안전하게 사용할 수 있도록 온전하고 열 분배를 방해하는 침전물을 제거할 수 있는 경우에만 보증됩니다.


Dry-Heat Sterilization
The process of thermal sterilization of Pharmacopeial articles by dry heat is usually carried out by a batch process in an oven designed expressly for that purpose. A modern oven is supplied with heated, filtered air, distributed uniformly throughout the chamber by convection or radiation and employing a blower system with devices for sensing, monitoring, and controlling the critical parameters. The validation of a dry-heat sterilization facility is carried out in a manner similar to that for a steam sterilizer described earlier. Where the unit is employed for sterilizing components such as containers intended for intravenous solutions, care should be taken to avoid accumulation of particulate matter in the chamber. A typical acceptable range in temperature in the empty chamber is ±15 when the unit is operating at not less than 250.

건조열에 의한 약품 열멸균 프로세스는 일반적으로 해당 목적을 위해 특별히 설계된 오븐에서 일괄 처리 방식으로 수행됩니다. 최신 오븐에는 가열되고 여과된 공기가 공급되며, 대류 또는 방사선에 의해 챔버 전체에 균일하게 분배되며, 임계 파라미터를 감지, 감시 및 제어하는 장치가 있는 송풍기 시스템을 사용합니다. 건열살균설비의 검증은 앞서 기술한 증기살균기와 유사한 방법으로 실시한다. 정맥 용액 용기와 같은 구성 요소를 멸균하기 위해 장치를 사용하는 경우, 챔버에 입자 물질이 축적되지 않도록 주의해야 합니다. 장치가 250 이상에서 작동할 때 빈 챔버 내의 일반적인 허용 온도 범위는 ±15입니다.


In addition to the batch process described above, a continuous process is frequently employed to sterilize and depyrogenate glassware as part of an integrated continuous aseptic filling and sealing system. Heat distribution may be by convection or by direct transfer of heat from an open flame. The continuous system usually requires a much higher temperature than cited above for the batch process because of a much shorter dwell time. However, the total temperature input during the passage of the product should be equivalent to that achieved during the chamber process. The continuous process also usually necessitates a rapid cooling stage prior to the aseptic filling operation. In the qualification and validation program, in view of the short dwell time, parameters for uniformity of the temperature, and particularly the dwell time, should be established.

위에서 설명한 배치 프로세스 외에 연속적인 프로세스는 통합된 연속적인 무균 충전 및 밀봉 시스템의 일부로서 유리기구를 멸균 및 탈수소화하기 위해 자주 사용된다. 열 분포는 대류 또는 화염으로부터의 직접 열 전달에 의해 이루어질 수 있습니다. 연속 시스템은 일반적으로 배치 프로세스에 대해 위에서 언급한 것보다 훨씬 높은 온도를 요구합니다. 이는 드웰 시간이 훨씬 짧습니다. 그러나 제품 통과 시 총 온도 입력은 챔버 공정에서 얻은 온도와 같아야 합니다. 또한 연속 프로세스는 일반적으로 무균 충전 작업 전에 빠른 냉각 단계를 필요로 합니다. 자격 및 유효성 검사 프로그램에서는 짧은 드웰 시간을 고려하여 온도, 특히 드웰 시간의 균일성을 위한 매개변수를 설정해야 한다.


A microbial survival probability of 10–12 is considered achievable for heat-stable articles or components. An example of a biological indicator for validating and monitoring dry-heat sterilization is a preparation of Bacillus subtilis spores. Since dry heat is frequently employed to render glassware or containers free from pyrogens as well as viable microbes, a pyrogen challenge, where necessary, should be an integral part of the validation program, e.g., by inoculating one or more of the articles to be treated with 1000 or more USP Units of bacterial endotoxin. The test with Limulus lysate could be used to demonstrate that the endotoxic substance has been inactivated to not more than 1/1000 of the original amount (3 log cycle reduction). For the test to be valid, both the original amount and, after acceptable inactivation, the remaining amount of endotoxin should be measured. For additional information on the endotoxin assay, see Bacterial Endotoxins Test 85.

10–12의 미생물 생존 확률은 열에 안정적인 물품이나 구성요소에 대해 달성 가능한 것으로 간주된다. 건조열 멸균을 검증 및 감시하기 위한 생물학적 지표의 예로는 아틸리스균 포자의 제제가 있다. 건열은 유리제품이나 용기에 생균뿐만 아니라 화농이 없는 상태로 만들기 위해 자주 사용되기 때문에, 필요한 경우, 예를 들어 1000개 이상의 세균 엔도톡신 USP 유닛으로 처리할 물품에 접종함으로써 발열 문제가 검증 프로그램의 필수적인 부분이 되어야 한다. Limulus lysate를 사용한 테스트는 내독성 물질이 원래 양의 1000분의 1 이하로 불활성화되었음을 입증하는 데 사용할 수 있다(3 log cycle reduction). 테스트가 유효하려면 원래 양 및 허용 가능한 불활성화 후 남은 엔도톡신 양을 모두 측정해야 합니다. 엔도톡신 검사에 대한 자세한 내용은 세균 엔도톡신 테스트 85를 참조하십시오.


Gas Sterilization
The choice of gas sterilization as an alternative to heat is frequently made when the material to be sterilized cannot withstand the high temperatures obtained in the steam sterilization or dry-heat sterilization processes. The active agent generally employed in gaseous sterilization is ethylene oxide of acceptable sterilizing quality. Among the disadvantages of this sterilizing agent are its highly flammable nature unless mixed with suitable inert gases, its mutagenic properties, and the possibility of toxic residues in treated materials, particularly those containing chloride ions. The sterilization process is generally carried out in a pressurized chamber designed similarly to a steam autoclave but with the additional features (see below) unique to sterilizers employing this gas. Facilities employing this sterilizing agent should be designed to provide adequate post sterilization degassing, to enable microbial survivor monitoring, and to minimize exposure of operators to the potentially harmful gas.3
Qualification of a sterilizing process employing ethylene oxide gas is accomplished along the lines discussed earlier. However, the program is more comprehensive than for the other sterilization procedures, since in addition to temperature, the humidity, vacuum/positive pressure, and ethylene oxide concentration also require rigid control. An important determination is to demonstrate that all critical process parameters in the chamber are adequate during the entire cycle. Since the sterilization parameters applied to the articles to be sterilized are critical variables, it is frequently advisable to precondition the load to achieve the required moisture content in order to minimize the time of holding at the required temperature before placement of the load in the ethylene oxide chamber. The validation process is generally made employing product inoculated with appropriate (BIs) such as spore preparations of Bacillus subtilis. For validation they may be used in full chamber loads of product, or simulated product. The monitoring of moisture and gas concentration requires the utilization of sophisticated instrumentation that only knowledgeable and experienced individuals can calibrate, operate, and maintain. The BI may be employed also in monitoring routine runs.
As is indicated elsewhere in this chapter, the BI may be employed in a fraction negative mode to establish the ultimate microbiological survivor probability in designing an ethylene oxide sterilization cycle using inoculated product or inoculated simulated product.

가스 멸균은 증기 멸균 또는 건열 멸균 과정에서 얻은 고온을 멸균할 수 없는 경우 열 대신 가스 멸균을 선택하는 경우가 많습니다. 가스 멸균에 일반적으로 사용되는 활성제는 허용되는 살균 품질의 산화 에틸렌입니다. 이 살균제의 단점으로는 적절한 불활성가스와 혼합되지 않는 한 가연성이 높고 변이원성 및 처리물, 특히 염화물 이온을 포함하는 물질에 독성 잔류물이 존재할 가능성이 있다. 멸균 프로세스는 일반적으로 증기 고압 멸균기와 유사하게 설계된 가압 챔버에서 수행되지만, 이 가스를 사용하는 멸균기에 고유한 추가 기능(아래 참조)이 있습니다. 이 살균제를 사용하는 시설은 적절한 멸균 후 가스 제거, 미생물 생존자 모니터링 및 작업자가 잠재적으로 유해한 가스에 노출되는 것을 최소화하도록 설계되어야 한다.3
에틸렌옥사이드 가스를 이용한 멸균 공정의 인정은 앞에서 설명한 라인을 따라 이루어진다. 그러나 온도뿐만 아니라 습도, 진공/양압, 산화 에틸렌 농도도 엄격한 관리가 필요하기 때문에 다른 멸균 절차보다 프로그램이 더 포괄적입니다. 중요한 결정은 챔버 내의 모든 중요한 공정 매개변수가 전체 사이클 동안 적절함을 입증하는 것입니다. 멸균 대상물에 적용되는 멸균 파라미터는 중요한 변수이므로 에틸렌옥시드 챔버에 부하를 배치하기 전에 필요한 온도에서 유지되는 시간을 최소화하기 위해 필요한 수분 함량을 달성하기 위해 부하를 사전 조절하는 것이 바람직하다. 일반적으로 밸리데이션 과정은 Bacillus subtilis의 포자제제 등 적절한 BI를 접종한 제품을 사용하여 이루어진다. 유효성 검사를 위해 제품의 전체 챔버 부하 또는 시뮬레이션 제품에 사용할 수 있습니다. 수분 및 가스 농도를 모니터링하려면 지식과 경험이 있는 사람만이 교정, 작동 및 유지 관리할 수 있는 정교한 계측기를 사용해야 합니다. BI는 루틴 실행 모니터링에도 사용될 수 있습니다.
본 장의 다른 부분에서 제시된 바와 같이, BI는 접종 제품 또는 접종 시뮬레이션 제품을 사용하여 산화 에틸렌 멸균 사이클을 설계할 때 궁극적인 미생물학적 생존 확률을 확립하기 위해 분율 음성 모드로 사용될 수 있다.


One of the principal limitations of the ethylene oxide sterilization process is the limited ability of the gas to diffuse to the innermost product areas that require sterilization. Package design and chamber loading patterns therefore must be determined so that there is minimal resistance to gas diffusion.
Sterilization by Ionizing Radiation
The rapid proliferation of medical devices unable to withstand heat sterilization and the concerns about the safety of ethylene oxide have resulted in increasing applications of radiation sterilization. It is applicable also to drug substances and final dosage forms. The advantages of sterilization by irradiation include low chemical reactivity, low measurable residues, and the fact that there are fewer variables to control. In fact, radiation sterilization is unique in that the basis of control is essentially that of the absorbed radiation dose, which can be precisely measured. Because of this characteristic, new procedures have been developed to determine the sterilizing dose. These, however, are still under review and appraisal, particularly with regard to the need, or otherwise, for additional controls and safety measures. Irradiation causes only a minimal temperature rise but can affect certain grades and types of plastics and glass.
The two types of ionizing radiation in use are radioisotope decay (gamma radiation) and electron-beam radiation. In either case the radiation dose established to yield the required degree of sterility assurance should be such that, within the range of minimum and maximum doses set, the properties of the article being sterilized are acceptable.

산화 에틸렌 멸균 프로세스의 주요 한계 중 하나는 멸균이 필요한 가장 안쪽 제품 영역으로 확산되는 가스의 제한된 능력입니다. 따라서 가스 확산에 대한 저항이 최소화되도록 패키지 설계 및 챔버 부하 패턴을 결정해야 합니다.
이온화 방사선에 의한 멸균
열 살균을 견디지 못하는 의료기기의 급속한 확산과 산화 에틸렌의 안전에 대한 우려로 인해 방사선 살균의 응용이 증가하고 있습니다. 약물과 최종 투여 형태에도 적용할 수 있다. 조사에 의한 멸균의 장점은 낮은 화학 반응성, 낮은 측정 가능한 잔류물, 제어해야 할 변수가 적다는 것이다. 실제로 방사선 멸균은 기본적으로 흡수된 방사선량의 조절 기준이 정밀하게 측정할 수 있다는 점에서 특이하다. 이러한 특성 때문에 멸균 용량을 결정하기 위한 새로운 절차가 개발되었습니다. 그러나 이러한 사항은 특히 추가 통제와 안전 조치의 필요성 또는 그 밖의 필요성과 관련하여 여전히 검토 및 평가 중이다. 조사로 인한 온도 상승은 미미하지만 플라스틱 및 유리의 특정 등급 및 유형에 영향을 미칠 수 있습니다.
사용 중인 이온화 방사선의 두 가지 유형은 방사성 동위원소 붕괴(감마 방사선)와 전자선 방사선이다. 어느 경우든 필요한 수준의 불임 보증을 제공하기 위해 설정된 방사선량은 최소 및 최대 선량 세트 범위 내에서 멸균 대상 물품의 특성이 허용될 수 있도록 해야 한다.


For gamma irradiation, the validation of a procedure includes the establishment of article materials compatibility, establishment of product loading pattern and completion of dose mapping in the sterilization container (including identification of the minimum and maximum dose zones), establishment of timer setting, and demonstration of the delivery of the required sterilization dose. For electron-beam irradiation, in addition, the on-line control of voltage, current, conveyor speed, and electron beam scan dimension must be validated.

감마선 조사의 경우 절차의 검증에는 물품 재료 적합성 확립, 제품 적재 패턴 확립 및 멸균 용기 내 선량 매핑 완료(최소 및 최대 선량 구역 식별 포함), 타이머 설정 및 전달 시연 등이 포함된다. 필요한 멸균 용량의. 또한 전자선 조사를 위해 전압, 전류, 컨베이어 속도 및 전자선 스캔 치수의 온라인 제어를 검증해야 합니다.


For gamma radiation sterilization, an effective sterilizing dose that is tolerated without damaging effect should be selected. Although 2.5 megarads (Mrad) of absorbed radiation was historically selected, it is desirable and acceptable in some cases to employ lower doses for devices, drug substances, and finished dosage forms. In other cases, however, higher doses are essential. In order to validate the efficacy particularly of the lower exposure levels, it is necessary to determine the magnitude (number, degree, or both) of the natural radiation resistance of the microbial population of the product. Specific product loading patterns must be established, and absorbed minimum and maximum dosage distribution must be determined by use of chemical dosimeters. (These dosimeters are usually dyed plastic cylinders, slides, or squares that show color intensification based directly on the amount of absorbed radiation energy; they require careful calibration.)

감마선 멸균의 경우, 손상 없이 견딜 수 있는 효과적인 멸균 선량을 선택해야 한다. 흡수된 방사선의 2.5메가라드(Mrad)가 역사적으로 선택되었지만, 기기, 약물 및 완료된 용량 형태에 대해 낮은 선량을 사용하는 것이 바람직하고 일부 경우에는 허용된다. 그러나 다른 경우에는 더 높은 선량이 필수적이다. 특히 낮은 노출 수준의 유효성을 검증하기 위해서는 제품의 미생물 집단의 자연방사선 저항성의 크기(수, 정도 또는 둘 다)를 결정해야 한다. 특정 제품 로딩 패턴을 확립해야 하며, 흡수 최소 및 최대 용량 분포는 화학 선량계를 사용하여 결정해야 한다. (이 선량계는 일반적으로 흡수된 방사 에너지량에 따라 직접적으로 색 강도를 나타내는 염색 플라스틱 실린더, 슬라이드 또는 정사각형이다. 그들은 세심한 보정이 필요하다.)


The setting of the preferred absorbed dose has been carried out on the basis of pure cultures of resistant microorganisms and employing inoculated product, e.g., with spores of Bacillus pumilus as biological indicators. A fractional experimental cycle approach provides the data to be utilized to determine the D10 value of the biological indicator. This information is then applied in extrapolating the amount of absorbed radiation to establish an appropriate microbial survivor probability.

바람직한 흡수 용량 설정은 내성 미생물의 순수 배양에 기초하여 수행되었으며, 생물학적 지표로 바실러스 푸밀루스 포자를 사용하는 등 접종 제품을 사용하였다. 부분 실험 사이클 어프로치는 생물학적 지표의 D10 값을 결정하기 위해 이용되는 데이터를 제공한다. 이 정보는 적절한 미생물 생존 확률을 설정하기 위해 흡수된 방사선의 양을 추정할 때 적용된다.

 

The most recent procedures for gamma radiation sterilization base the dose upon the radiation resistance of the natural heterogeneous microbial burden contained on the product to be sterilized. Such procedures are currently being refined but may provide a more representative assessment of radiation resistance, especially where significant numbers of radiation-resistant organisms are present.4 These range from inoculation with standard resistant organisms such as Bacillus pumilus to subprocess (sublethal) dose exposure of finished product samples taken from production lines. Certain hypotheses are common to all these methods. Although the total microbial population present on an article generally consists of a mixture of microorganisms of differing sensitivity to radiation, the step of subjecting the article to a less than totally lethal sterilization dose eliminates the less resistant microbial fraction. This results in a residual relatively homogeneous population with respect to radiation resistance and yields consistent and reproducible results of determinations with the residual population. The amount of laboratory manipulation required is dependent upon the particular procedure used.

감마선 멸균의 가장 최근의 절차는 멸균 대상 제품에 포함된 자연 이종 미생물 부담의 방사선 내성에 기초한 선량을 기초로 한다. 그러한 절차는 현재 개선되고 있지만 특히 내방사선성 유기체의 수가 상당할 경우 방사선 저항성의 보다 대표적인 평가를 제공할 수 있다.4 여기에는 Bacillus pumilus와 같은 표준 내성 생물에 대한 접종에서부터 생산 라인에서 추출한 완제품 샘플의 서브 프로세스(subprocess) 용량 노출에 이르기까지 다양합니다. 특정 가설은 이 모든 방법에 공통적이다. 물품에 존재하는 총 미생물군은 일반적으로 방사선에 대한 민감도가 다른 미생물의 혼합물로 구성되지만, 해당 물품에 대해 치사량보다 적은 살균량을 적용하는 단계는 내성이 낮은 미생물 분율을 제거한다. 그 결과 방사선 저항성과 관련하여 비교적 균일한 잔류 집단이 생성되고 잔류 모집단과 일관되고 재현 가능한 측정 결과가 도출된다. 필요한 실험실 조작의 양은 사용되는 특정 절차에 따라 달라집니다.


One such procedure requires the enumeration of the microbial population on representative samples of independently manufactured lots of the article. The resistance of the microbial population is not determined, and dose setting is based on a standard arbitrary radiation resistance assigned to the microbial population, derived from data obtained from manufacturers and from the literature. The assumption is made that the distribution of resistances chosen represents a more severe challenge than the natural microbial population on the product to be sterilized. This assumption, however, is verified by experiment. After verification, the appropriate radiation sterilization dose is read from a table.
Another and, more elaborate method does not require the enumeration of the microbial population but uses a series of incremental dose exposures to allow a dose established to be such that approximately one out of 100 samples irradiated at that dose will be nonsterile.

이러한 절차 중 하나는 독립적으로 제조된 로트의 대표 샘플에 미생물 집단을 열거하는 것이다. 미생물 집단의 저항성은 결정되지 않았으며 선량 설정은 미생물 집단에 할당된 표준 임의 방사선 저항성에 기초하며, 제조업체와 문헌에서 얻은 데이터에서 도출된다. 선택한 저항성의 분포는 멸균 대상 제품의 자연 미생물 집단보다 더 심각한 문제를 나타낸다고 가정합니다. 그러나 이 가정은 실험을 통해 입증되었다. 검증 후 테이블에서 적절한 방사선 멸균량을 읽어낸다.
또 다른 보다 정교한 방법은 미생물 집단을 열거할 필요가 없지만 일련의 증분 선량 노출을 사용하여 해당 선량으로 조사된 샘플 100개 중 약 1개가 비멸균이 되도록 설정된 선량을 허용한다.

 

This is not the ultimate sterilization dose, but it provides the basis on which to determine the sterilization dose by extrapolation from the dose yielding one out of 100 nonsterile samples, using an appropriate resistance factor that characterizes the remaining microorganism-resistant population. A periodic audit is conducted to check that the findings continue to be operative.
More elaborate procedures, requiring more experimentation and including the isolation of microbial cultures, include one in which, after determining the substerilization dose (yielding one out of 100 nonsterile samples), the resistance of the surviving microorganisms is used to determine the sterilizing dose. Another is based on different determinations, starting with a substerilization incremental dose that results in not more than 50% of the samples being nonsterile. After irradiation of sufficient samples at this dose, a number of microbial isolates are obtained. The radiation resistance of each of these is determined. The sterilization dose is then calculated using the resistance determinations and the 50% sterilizing dose initially determined. Audit procedures are required for these methods, as for the others described.

이는 최종 살균 선량은 아니지만, 나머지 미생물 내성 집단을 특징짓는 적절한 저항 계수를 이용하여 100개의 비멸균 시료 중 1개를 산출하는 선량에서 외삽하여 멸균 선량을 결정할 수 있는 근거를 제공한다. 정기적인 감사가 실시되어 조사 결과가 계속 기능하고 있는 것을 확인합니다.
더 많은 실험이 필요하고 미생물 배양물의 분리를 포함한 보다 정교한 절차에는 서브살균 선량(100개의 비살균 샘플 중 1개를 산출)을 결정한 후 남은 미생물의 저항을 사용하여 멸균 용량을 결정하는 절차가 포함된다. 또 다른 방법은 50% 이하의 검체가 비멸균이 되는 서브살균 증분 선량부터 시작하는 다양한 결정에 기초한다. 이 용량으로 충분한 시료를 조사한 후 다수의 미생물 분리액을 얻을 수 있다. 이러한 각각의 방사선 저항은 결정됩니다. 그런 다음 저항 측정과 초기에 결정된 50% 살균 선량을 사용하여 멸균 선량을 계산합니다. 이러한 방법에는, 설명한 다른 방법과 같이, 감사 순서가 필요합니다.


Where the required minimum radiation dose has been determined and delivery of that dose has been confirmed (by chemical or physical dosimeters), release of the article being sterilized could be effected within the overall validation of sterility assurance (which may include such confirmation of applied dosage, the use of biological indicators, and other means).

필요한 최소 방사선량이 결정되고 해당 선량의 전달이 확인된 경우(화학 또는 물리적 선량계에 의해) 멸균 대상 물품의 방출은 불임 보장의 전반적인 유효성 검사(적용량 확인, 생물학적 지표의 사용 포함) 내에서 이루어질 수 있다. 기타 수단).


Sterilization by Filtration

여과 살균
Filtration through microbial retentive materials is frequently employed for the sterilization of heat-labile solutions by physical removal of the contained microorganisms. A filter assembly generally consists of a porous matrix sealed or clamped into an impermeable housing. The effectiveness of a filter medium or substrate depends upon the pore size of the porous material and may depend upon adsorption of bacteria on or in the filter matrix or upon a sieving mechanism. There is some evidence to indicate that sieving is the more important component of the mechanism. Fiber-shedding filters, particularly those containing asbestos, are to be avoided unless no alternative filtration procedures are possible. Where a fiber-shedding filter is required, it is obligatory that the process include a nonfiber-shedding filter introduced downstream or subsequent to the initial filtration step.
Filter Rating— The pore sizes of filter membranes are rated by a nominal rating that reflects the capability of the filter membrane to retain microorganisms of size represented by specified strains, not by determination of an average pore size and statement of distribution of sizes. Sterilizing filter membranes (those used for removing a majority of contaminating microorganisms) are membranes capable of retaining 100% of a culture of 107 microorganisms of a strain of Pseudomonas diminuta (ATCC 19146) per square centimeter of membrane surface under a pressure of not less than 30 psi (2.0 bar). Such filter membranes are nominally rated 0.22 µm or 0.2 µm, depending on the manufacturer's practice.5 This rating of filter membranes is also specified for reagents or media that have to be sterilized by filtration (see treatment of Isopropyl Myristate under Oils and Oily Solutions or Ointments and Creams in the chapter Sterility Tests 71). Bacterial filter membranes (also known as analytical filter membranes), which are capable of retaining only larger microorganisms, are labeled with a nominal rating of 0.45 µm. No single authoritative method for rating 0.45-µm filters has been specified, and this rating depends on conventional practice among manufacturers; 0.45-µm filters are capable of retaining particular cultures of Serratia marcescens (ATCC 14756) or Ps. diminuta. Test pressures used vary from low (5 psi, 0.33 bar for Serratia, or 0.5 psi, 0.34 bar for Ps. diminuta) to high (50 psi, 3.4 bar). They are specified for sterility testing (see Membrane Filtration in the section Test for Sterility of the Product to be Examined under Sterility Tests 71) where less exhaustive microbial retention is required. There is a small probability of testing specimens contaminated solely with small microorganisms). Filter membranes with a very low nominal rating may be tested with a culture of Acholeplasma laidlawii or other strain of Mycoplasma, at a pressure of 7 psi (0.7 bar) and be nominally rated 0.1 µm. The nominal ratings based on microbial retention properties differ when rating is done by other means, e.g., by retention of latex spheres of various diameters. It is the user's responsibility to select a filter of correct rating for the particular purpose, depending on the nature of the product to be filtered. It is generally not feasible to repeat the tests of filtration capacity in the user's establishment. Microbial challenge tests are preferably performed under a manufacturer's conditions on each lot of manufactured filter membranes.
The user must determine whether filtration parameters employed in manufacturing will significantly influence microbial retention efficiency. Some of the other important concerns in the validation of the filtration process include product compatibility, sorption of drug, preservative or other additives, and initial effluent endotoxin content.
Since the effectiveness of the filtration process is also influenced by the microbial burden of the solution to be filtered, determining the microbiological quality of solutions prior to filtration is an important aspect of the validation of the filtration process, in addition to establishing the other parameters of the filtration procedure, such as pressures, flow rates, and filter unit characteristics. Hence, another method of describing filter-retaining capability is the use of the log reduction value (LRV). For instance, a 0.2-µm filter that can retain 107 microorganisms of a specified strain will have an LRV of not less than 7 under the stated conditions.
The process of sterilization of solutions by filtration has recently achieved new levels of proficiency, largely as a result of the development and proliferation of membrane filter technology. This class of filter media lends itself to more effective standardization and quality control and also gives the user greater opportunity to confirm the characteristics or properties of the filter assembly before and after use. The fact that membrane filters are thin polymeric films offers many advantages but also some disadvantages when compared to depth filters such as porcelain or sintered material. Since much of the membrane surface is a void or open space, the properly assembled and sterilized filter offers the advantage of a high flow rate. A disadvantage is that since the membrane is usually fragile, it is essential to determine that the assembly was properly made and that the membrane was not ruptured during assembly, sterilization, or use. The housings and filter assemblies that are chosen should first be validated for compatibility and integrity by the user. While it may be possible to mix assemblies and filter membranes produced by different manufacturers, the compatibility of these hybrid assemblies should first be validated. Additionally, there are other tests to be made by the manufacturer of the membrane filter, which are not usually repeated by the user. These include microbiological challenge tests. Results of these tests on each lot of manufactured filter membranes should be obtained from the manufacturer by users for their records.
Filtration for sterilization purposes is usually carried out with assemblies having membranes of nominal pore size rating of 0.2 µm or less, based on the validated challenge of not less than 107 Pseudomonas diminuta (ATCC No. 19146) suspension per square centimeter of filter surface area. Membrane filter media now available include cellulose acetate, cellulose nitrate, fluorocarbonate, acrylic polymers, polycarbonate, polyester, polyvinyl chloride, vinyl, nylon, polytef, and even metal membranes, and they may be reinforced or supported by an internal fabric. A membrane filter assembly should be tested for initial integrity prior to use, provided that such test does not impair the validity of the system, and should be tested after the filtration process is completed to demonstrate that the filter assembly maintained its integrity throughout the entire filtration procedure. Typical use tests are the bubble point test, the diffusive airflow test, the pressure hold test, and the forward flow test. These tests should be correlated with microorganism retention.

 


ASEPTIC PROCESSING
Although there is general agreement that sterilization of the final filled container as a dosage form or final packaged device is the preferred process for ensuring the minimal risk of microbial contamination in a lot, there is a substantial class of products that are not terminally sterilized but are prepared by a series of aseptic steps. These are designed to prevent the introduction of viable microorganisms into components, where sterile, or once an intermediate process has rendered the bulk product or its components free from viable microorganisms. This section provides a review of the principles involved in producing aseptically processed products with a minimal risk of microbial contamination in the finished lot of final dosage forms.
A product defined as aseptically processed is likely to consist of components that have been sterilized by one of the processes described earlier in this chapter. For example, the bulk product, if a filterable liquid, may have been sterilized by filtration. The final empty container components would probably be sterilized by heat, dry heat being employed for glass vials and an autoclave being employed for rubber closures. The areas of critical concern are the immediate microbial environment where these presterilized components are exposed during assembly to produce the finished dosage form and the aseptic filling operation.
The requirements for a properly designed, validated, and maintained filling or other aseptic processing facility are mainly directed to (1) an air environment free from viable microorganisms, of a proper design to permit effective maintenance of air supply units, and (2) the provision of trained operating personnel who are adequately equipped and gowned. The desired environment may be achieved through the high level of air filtration technology now available, which contributes to the delivery of air of the requisite microbiological quality.6 The facilities include both primary (in the vicinity of the exposed article) and secondary (where the aseptic processing is carried out) barrier systems.
For a properly designed aseptic processing facility or aseptic filling area, consideration should be given to such features as nonporous and smooth surfaces, including walls and ceilings that can be sanitized frequently; gowning rooms with adequate space for personnel and storage of sterile garments; adequate separation of preparatory rooms for personnel from final aseptic processing rooms, with the availability if necessary of devices such as airlocks and air showers; proper pressure differentials between rooms, the most positive pressure being in the aseptic processing rooms or areas; the employment of laminar (unidirectional) airflow in the immediate vicinity of exposed product or components, and filtered air exposure thereto, with adequate air change frequency; appropriate humidity and temperature environmental controls; and a documented sanitization program. Proper training of personnel in hygienic and gowning techniques should be undertaken so that, for example, gowns, gloves, and other body coverings substantially cover exposed skin surfaces.
Certification and validation of the aseptic process and facility are achieved by establishing the efficiency of the filtration systems, by employing microbiological environmental monitoring procedures, and by processing of sterile culture medium as simulated product.
Monitoring of the aseptic facility should include periodic environmental filter examination as well as routine particulate and microbiological environmental monitoring and may include periodic sterile culture medium processing.

STERILITY TESTING OF LOTS
It should be recognized that the referee sterility test might not detect microbial contamination if present in only a small percentage of the finished articles in the lot because the specified number of units to be taken imposes a significant statistical limitation on the utility of the test results. This inherent limitation, however, has to be accepted, because current knowledge offers no nondestructive alternatives for ascertaining the microbiological quality of every finished article in the lot, and it is not a feasible option to increase the number of specimens significantly.
The primary means of supporting the claim that a lot of finished articles purporting to be sterile meets the specifications consists of the documentation of the actual production and sterilization record of the lot and of the additional validation records that the sterilization process has the capability of totally inactivating the established product microbial burden or a more resistant challenge. Further, it should be demonstrated that any processing steps involving exposed product following the sterilization procedure are performed in an aseptic manner to prevent contamination. If data derived from the manufacturing process sterility assurance validation studies and from in-process controls are judged to provide greater assurance that the lot meets the required low probability of containing a contaminated unit (compared to sterility testing results from finished units drawn from that lot), any sterility test procedures adopted may be minimal, or dispensed with on a routine basis. However, assuming that all the above production criteria have been met, it may still be desirable to perform sterility testing on samples of the lot of finished articles. Such sterility testing is usually carried out directly after the lot is manufactured as a final product quality control test.7 Sterility tests employed in this way in manufacturing control should not be confused with those described under Sterility Tests 71. The procedural details may be the same with regard to media, inocula and handling of specimens, but the number of units and/or incubation time(s) selected for testing may differ. The number should be chosen relative to the purpose to be served, i.e., according to whether greater or lesser reliance is placed on sterility testing in the context of all the measures for sterility assurance in manufacture. Also, longer times of incubation would make the test more sensitive to slow-growing microorganisms. In the growth promotion tests for media, such slow growers, particularly if isolated from the product microbial burden, should be included with the other test stains. Negative or satisfactory sterility test results serve only as further support of the existing evidence concerning the quality of the lot if all the pertinent production records of the lot are in order and the sterilizing or aseptic process is known to be effective. Unsatisfactory test results, however, in manufacturing quality control indicate a need for further action (see Performance, Observation, and Interpretation).


DEFINITION OF A LOT AND SELECTION OF SPECIMENS FOR STERILITY TEST PURPOSES
Articles may be terminally sterilized either in a chamber or by a continuous process. In the chamber process, a number of articles are sterilized simultaneously under controlled conditions—for example, in a steam autoclave—so that for the purpose of sterility testing, the lot is considered to be the contents of a single chamber. In the continuous process, the articles are sterilized individually and consecutively (for example, by exposure to electron-beam radiation), so that the lot is considered to be not larger than the total number of similar items subjected to uniform sterilization for a period of not more than 24 hours.
For aseptic fills, the term “filling operation” describes a group of final containers, identical in all respects, that have been aseptically filled with the same product from the same bulk within a period not longer than 24 consecutive hours without an interruption or a change that would affect the integrity of the filling assembly. The items tested should be representative of each filling assembly and should be selected at appropriate intervals throughout the entire filling operation. If more than three filling machines, each with either single or multiple filling stations, are used for filling a single lot, a minimum of 20 filled containers (not less than 10 per medium) should be tested for each filling machine, but the total number generally need not exceed 100 containers.
For small lots, in the case of either aseptic filling or terminal sterilization, if the number of final containers in the lot is between 20 and 200, about 10% of the containers should usually be tested. If the number of final containers in the lot is 20 or less, not fewer than 2 final containers should be tested.

물품은 챔버 내 또는 연속 공정 중 하나로 종단 멸균할 수 있다. 챔버 프로세스에서는 예를 들어 증기 고압 멸균과 같은 제어된 조건에서 여러 물품을 동시에 멸균하므로 멸균 테스트의 목적상 로트는 단일 챔버의 내용물로 간주됩니다. 연속공정에서는 개별 및 연속적으로(예를 들어 전자선 피폭에 의해) 멸균되므로 로트가 24시간 이하의 균일한 멸균을 실시한 동종품의 총수 이하인 것으로 간주한다.
무균 충전의 경우, "충전 작업"이라는 용어는 충전 조립체의 무결성에 영향을 미칠 수 있는 중단 또는 변경 없이 연속 24시간 이내에 동일한 부피의 동일한 제품으로 무균 충전된 최종 용기 그룹을 나타냅니다. 테스트한 항목은 각 충전 조립체를 대표해야 하며 전체 충전 작업 동안 적절한 간격으로 선택해야 합니다. 단일 로트를 채우기 위해 각각 단일 또는 여러 개의 충전소가 있는 3개 이상의 충전기를 사용하는 경우, 각 충전기에 대해 최소 20개의 충전 용기(매체당 10개 이상)를 테스트해야 하지만 일반적으로 총 개수가 100개를 초과할 필요는 없습니다.
소규모 로트의 경우, 무균 충전 또는 말단 멸균의 경우, 로트의 최종 용기 수가 20개에서 200개 사이인 경우, 일반적으로 용기의 약 10%를 검사해야 합니다. 로트의 최종 컨테이너 수가 20개 이하인 경우, 2개 이상의 최종 컨테이너를 테스트해야 합니다.

PERFORMANCE, OBSERVATION, AND INTERPRETATION
The facility for sterility testing should be such as to offer no greater a microbial challenge to the articles being tested than that of an aseptic processing production facility. The sterility testing procedure should be performed by individuals having a high level of aseptic technique proficiency. The test performance records of these individuals should be documented.

불임 테스트 시설은 무균 가공 생산 시설보다 시험 대상 물품에 미생물 문제를 일으키지 않는 시설이어야 한다. 멸균시험 절차는 높은 수준의 무균기술 숙련도를 가진 개인이 수행해야 한다. 이러한 개인의 시험 성과 기록을 문서화해야 합니다.
The extensive aseptic manipulations required to perform sterility testing may result in a probability of non-product-related contamination of the order of 10–3, a level similar to the overall efficiency of an aseptic operation and comparable to the microbial survivor probability of aseptically processed articles. This level of probability is significantly greater than that usually attributed to a terminal sterilization process, namely, 1 in 1 million or 10 –6 microbial survivor probability. Appropriate, known-to-be-sterile finished articles should be employed periodically as negative controls as a check on the reliability of the test procedure. Preferably, the technicians performing the test should be unaware that they are testing negative controls. Of these tests, a false-positive frequency not exceeding 2% is desirable.
For aseptically processed articles, these facts support the routine use of the test set forth under Sterility Tests 71 or a more elaborate one. The production and validation documentation should be acceptable and complete. For effectively terminally sterilized products, however, the lower microbial survivor probability may direct the use of a less extensive test than the compendial procedure specified under Sterility Tests 71, or even preclude altogether the necessity for performing one. This added reliability of sterility assurance of terminal sterilization depends upon a properly validated and documented sterilization process. Sterility testing alone is no substitute.
Interpretation of Quality Control Tests— The overall responsibility for the operation of the test unit and the interpretation of test results in relation to acceptance or rejection of a lot should be in the hands of those who have appropriate formal training in microbiology and have knowledge of industrial sterilization, aseptic processing, and the statistical concepts involved in sampling. These individuals should be knowledgeable also concerning the environmental control program in the test facility to ensure that the microbiological quality of the air and critical work surfaces are consistently acceptable.
Quality control sterility tests (either according to the official referee test or modified tests) may be carried out in two separate stages in order to rule out false positive results. First Stage. Regardless of the sampling plan used, if no evidence of microbial growth is found, the results of the test may be taken as indicative of absence of intrinsic contamination of the lot.
If microbial growth is found, proceed to the Second Stage (unless the First Stage test can be invalidated). Evidence for invalidating a First Stage test in order to repeat it as a First Stage test may be obtained from a review of the testing environment and the relevant records thereto. Finding of microbial growth in negative controls need not be considered the sole grounds for invalidating a First Stage test. When proceeding to the Second Stage, particularly when depending on the results of the test for lot release, concurrently, initiate and document a complete review of all applicable production and control records. In this review, consideration should be paid to the following: (1) a check on monitoring records of the validated sterilization cycle applicable to the product, (2) sterility test history relating to the particular product for both finished and in-process samples, as well as sterilization records of supporting equipment, containers/closures, and sterile components, if any, and (3) environmental control data, including those obtained from media fills, exposure plates, filtering records, any sanitization records and microbial monitoring records of operators, gowns, gloves, and garbing practices.
Failing any lead from the above review, the current microbial profile of the product should be checked against the known historical profile for possible change. Records should be checked concomitantly for any changes in source of product components or in-processing procedures that might be contributory. Depending on the findings, and in extreme cases, consideration may have to be given to revalidation of the total manufacturing process. For the Second Stage, it is not possible to specify a particular number of specimens to be taken for testing. It is usual to select double the number specified for the First Stage under Sterility Tests 71, or other reasonable number. The minimum volumes tested from each specimen, the media, and the incubation periods are the same as those indicated for the First Stage.
If no microbial growth is found in the Second Stage, and the documented review of appropriate records and the indicated product investigation does not support the possibility of intrinsic contamination, the lot may meet the requirements of a test for sterility. If growth is found, the lot fails to meet the requirements of the test. As was indicated for the First Stage test, the Second Stage test may similarly be invalidated with appropriate evidence, and, if so done, repeated as a Second Stage test.


1 A number of guidelines dealing particularly with the development and validation of sterilization cycles and related topics have been published. These include, by the Parenteral Drug Association, Inc. (PDA), Validation of Steam Sterilization Cycles (Technical Monograph No. 1), Validation of Aseptic Filling for Solution Drug Products (Technical Monograph No. 2), and Validation of Dry Heat Processes Used for Sterilization and Depyrogenation (Technical Monograph No. 3); and by the Pharmaceutical Manufacturers Association (PMA), Validation of Sterilization of Large-Volume Parenterals—Current Concepts (Science and Technology Publication No. 25). Other series of technical publications on these subjects by the Health Industry Manufacturers Association (HIMA) include Validation of Sterilization Systems (Report No. 78-4.1), Sterilization Cycle Development (Report No. 78-4.2), Industrial Sterility: Medical Device Standards and Guidelines (Document #9, Vol. 1), and Operator Training . . . . for Ethylene Oxide Sterilization, for Steam Sterilization Equipment, for Dry Heat Sterilization Equipment, and for Radiation Sterilization Equipment (Report Nos. 78-4.5 through 4.8). Recommended practice guidelines published by the Association for the Advancement of Medical Instrumentation (AAMI) include Guideline for Industrial Ethylene Oxide Sterilization of Medical Devices—Process Design, Validation, Routine Sterilization (No. OPEO-12/81) and Process Control Guidelines for the Radiation Sterilization of Medical Devices (No. RS-P 10/82). These detailed publications should be consulted for more extensive treatment of the principles and procedures described in this chapter.
2 An autoclave cycle, where specified in the compendia for media or reagents, is a period of 15 minutes at 121, unless otherwise indicated.
3 See Ethylene Oxide, Encyclopedia of Industrial Chemical Analysis, 1971, 12, 317-340, John Wiley & Sons, Inc., and Use of Ethylene Oxide as a Sterilant in Medical Facilities, NIOSH Special Occupational Hazard Review with Control Recommendations, August 1977, U. S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Criteria Documentation and Standards Development, Priorities and Research Analysis Branch, Rockville, MD.
4 Detailed descriptions of these procedures have been published by the Association for the Advancement of Medical Instrumentation (AAMI) in the document entitled Process Control Guidelines for Radiation Sterilization of Medical Devices (No. RS-P 10/82).
5 Consult “Microbiological Evaluation of Filters for Sterilizing Liquids,” Health Industry Manufacturers Association, Document No. 3, Vol. 4, 1982.
6 Available published standards for such controlled work areas include the following: (1) Federal Standard No. 209B, Clean Room and Work Station Requirements for a Controlled Environment, Apr. 24, 1973. (2) NASA Standard for Clean Room and Work Stations for Microbially Controlled Environment, publication NHB5340.2, Aug. 1967. (3) Contamination Control of Aerospace Facilities, U.S. Air Force, T.O. 00-25-203, 1 Dec. 1972, change 1-1, Oct. 1974.
7 Radioactive Pharmaceutical Products—Because of rapid radioactive decay, it is not feasible to delay the release of some radioactive pharmaceutical products in order to complete sterility tests on them. In such cases, results of sterility tests provide only retrospective confirmatory evidence for sterility assurance, which therefore depends on the primary means thereto established in the manufacturing and validation/certification procedures.

Auxiliary Information— Staff Liaison : Radhakrishna S Tirumalai, Scientist
Expert Committee : (MSA05) Microbiology and Sterility Assurance
USP29–NF24 Page 3041
Pharmacopeial Forum : Volume No. 30(5) Page 1729
Phone Number : 1-301-816-8339

 


USP 31

1035

BIOLOGICAL INDICATORS FOR STERILIZATION
A biological indicator is broadly defined as a characterized preparation of a specific microorganism that provides a defined and stable resistance to a specific sterilization process. Microorganisms widely recognized as suitable for biological indicators are spore-forming bacteria, because, with the exception of ionizing radiation processes, these microorganisms are significantly more resistant than normal microflora. A biological indicator can be used to assist in the performance qualification of the sterilization equipment and in the development and establishment of a validated sterilization process for a particular article. Biological indicators are used in processes that render a product sterile in its final package or container, as well as for the sterilization of equipment, materials, and packaging components used in aseptic processing. Biological indicators may also be used to monitor established sterilization cycles and in periodic revalidation of sterilization processes. Biological indicators may also be used to evaluate the capability of processes used to decontaminate isolators or aseptic clean-room environments.
The principles and requirements for these applications are described under Sterilization and Sterility Assurance of Compendial Articles 1211.

TYPES OF BIOLOGICAL INDICATORS
There are at least three types of biological indicators. Each type of indicator incorporates a known species of a microorganism of known sterilization resistance to the sterilization mode. Some biological indicators may also contain two different species and concentrations of microorganisms.
One form of biological indicator includes spores that are added to a carrier (a disk or strip of filter paper, glass, plastic, or other materials) and packaged to maintain the integrity and viability of the inoculated carrier.
Carriers and primary packaging shall not contain any contamination (physical, chemical, or microbial) that would adversely affect the performance or the stability characteristics of the biological indicator. The carrier and primary packaging shall not be degraded by the specific sterilization process, which is used in a manner that will affect the performance of the biological indicator. The carrier should withstand transport in the primary and secondary packaging and handling at the point of use. The design of the carrier and primary packaging should minimize the loss of the original inoculum during transport, handling, and shelf life storage.
Another form of biological indicator is a spore suspension that is inoculated on or into representative units of the product to be sterilized. This represents an inoculated product; however, a simulated inoculated product may be used if it is not practical to inoculate the actual product. A simulated product is a preparation that differs in one or more ways from the actual product, but performs as the actual product using test conditions or during actual production sterilization processing. Spore suspensions with a known D value should be used to inoculate the actual or simulated product. If a simulated inoculated product is used, it must be demonstrated that it will not degrade the sterilization resistance of the bioindicator. The physical design of actual or simulated product can affect the resistance of spore suspensions that are inoculated on or into the products. In the case of liquid inoculated products, it is often advisable to determine both the D value and z value of the specific biological indicator microorganism in the specific liquid product. The population, D value, z value where applicable, and endpoint kill time of the inoculated actual or simulated product should be determined.
A third form of biological indicator is a self-contained indicator. A self-contained biological indicator is designed so that the primary package, intended for incubation following sterilization processing, contains the growth medium for recovery of the process-exposed microorganisms. This form of biological indicator together with the self-contained growth medium can be considered a system. In the case of self-contained biological indicators, the entire system provides resistance to the sterilization process.
If the biological indicator is a paper strip or disk in a self-contained package that includes an available culture medium, the package design should be readily penetrable by the sterilizing agent. To allow for the time lag that may occur while the sterilizing agent reaches the contained microorganisms in the system, the D value, process endpoint kill time, and the survival time should be characterized for the system and not solely for the paper strip in the self-contained unit. Following the sterilizing treatment, the spore strip or disk is immersed in the self-contained medium by manipulation, which allows contact with the culture medium.
Self-contained biological indicators may also consist of a spore suspension in its own medium, and they often also contain a dye, which indicates positive or negative growth following incubation. Resistance of the self-contained system is dependent upon penetration of the sterilant into the package. Penetration may be controlled by the manufacturer through varying designs and composition of the self-contained biological indicator package, ampul, or container. Self-contained ampul biological indicators may be incubated directly following exposure to the sterilization process. The entire system is then incubated under the specified conditions. Growth or no growth of the treated spores is determined visually (either by observing a specified color change of an indicator incorporated in the medium or by turbidity) or by microscopic examination of the inoculated medium.
The self-contained system resistance characteristics must also comply with the labeling of the self-contained system and the relevant biological indicator monograph. The self-contained biological indicator system should withstand transport in the secondary packaging and handling at the point of use without breakage. The design of the self-contained system should be such to minimize the loss of the original inoculum of microorganisms during transport and handling. During or after the sterilization process, the materials used in the self-contained system shall not retain or release any substance that can inhibit the growth of low numbers of surviving indicator microorganism under culture conditions. Adequate steps must be taken to demonstrate that the recovery medium has retained its growth support characteristics after exposure to the sterilization process.
Preparation
All operations associated with the preparation of biological indicators are controlled by a documented quality system. Traceability is maintained for all materials and components incorporated in or coming into direct contact with the microorganism suspension, the inoculated carrier, or the biological indicator.
The preparation of stock spore suspensions of selected microorganisms used as biological indicators requires the development of appropriate procedures, including mass culturing, harvesting, purification, and maintenance of the spore suspensions. The stock suspension should contain predominantly dormant (nongerminating) spores that are held in a nonnutritive liquid.
The finished product (microbial suspension, inoculated carriers, or biological indicators) supplied by commercial manufacturers shall have no microorganisms, other than the test microorganism, present in sufficient numbers to adversely affect the product. The system to minimize the presence of microorganisms other than the biological indicator microorganism in the product will be validated, monitored, and recorded.
Selection for Specific Sterilization Processes
The selection of a biological indicator requires a knowledge of the resistance of the biological indicator system to the specific sterilization process. It must be established that the biological indicator system provides a challenge to the sterilization process that exceeds the challenge of the natural microbial burden in or on the product.
The effective use of biological indicators for the cycle development, process, and product validation, and routine production monitoring of a sterilization process requires a thorough knowledge of the product being sterilized, along with its component parts (materials and packaging). Only the widely recognized biological indicators specified in the particular biological indicator monograph should be used in the development or validation of a sterilization process. This will ensure that the biological indicator selected provides a greater challenge to the sterilization process than the bioburden in or on the product. Some users may require biological indicators with characteristics that differ from those widely available commercially. In such cases, users may grow their own spore cultures for the express purpose of preparing in-house biological indicators for their specific use. In such a case, the user is well advised to use organisms already described in the scientific literature as indicator organisms, and the user must have the capability of determining D and z values for in-house biological indicators. When biological indicators are prepared in-house, users must confirm the population, purity, and shelf life of the biological indicator to ensure the validity of any test conducted using the in-house biological indicator. When a bioburden-based sterilization process design is used, data comparing the resistance of the biological indicator to that of bioburden are essential. Enumeration of the bioburden content of the articles being sterilized is also required. The process must result in a biologically verified lethality sufficient to achieve a probability of obtaining a nonsterile unit that is less than one in a million.
Alternatively, the overkill method may be used in the design of a sterilization process. In this case, specific assumptions are made regarding the resistance assumption used in establishing sterilization process lethality requirements. In general, all overkill processes are built upon the assumption that the bioburden is equal to one million organisms and that the organisms are highly resistant. Thus, to achieve the required probability of a nonsterile unit that is less than one in a million, a minimum 12 D process is required. A 12 D process is defined as a process that provides a lethality sufficient to result in a 12 log reduction, which is equivalent to 12 times a D value for organisms with sufficiently higher resistance than the mean resistance of bioburden. Because the bioburden is assumed to be one million, an overkill process will result in a probability of nonsterility at much less than 106 in actual practice. Overkill process design and evaluation may differ depending upon the sterilization process under test. The use of an overkill design and validation approach may minimize or obviate the need for bioburden enumeration and identification.
Moist Heat— For moist heat sterilization process, spores of suitable strains of Bacillus stearothermophilus are commercially available as biological indicators and frequently employed. Other heat-resistant spore-forming microorganisms such as Clostridium sporogenes, Bacillus subtilis, and Bacillus coagulans have also been used in the development and validation of moist heat sterilization processes.
Dry Heat— For dry heat sterilization, spores of Bacillus subtilis spp. are sometimes used to validate the process. During the validation of dry heat sterilization processes, endotoxin depyrogenation studies are frequently conducted in lieu of microbial inactivation studies during the establishment of sterilization cycles because the inactivation rate of endotoxin is slower than the inactivation rate of Bacillus subtilis spores. In practice the reduction of endotoxin titer by three or more logs will result in a process that also achieves a probability of nonsterility substantially lower than 106.
Ionizing Radiation— Spores of Bacillus pumilus have been used to monitor sterilization processes using ionizing radiation; however, this is a cedlining practice. Radiation dose-setting methods that do not use biological indicators have been widely used to establish radiation processes. Furthermore, certain bioburden microorganisms can exhibit greater resistance to radiation than Bacillus pumilus.
Ethylene Oxide— For ethylene oxide sterilization, spores of a subspecies of Bacillus subtilis (Bacillus subtilis var. niger) are commonly used. The same biological indicator systems are generally used when 100% ethylene oxide or different ethylene oxide and carrier gas systems are used as sterilants.
Vapor-Phase Hydrogen Peroxide (VPHP)— This process has been shown to be an effective surface sterilant or decontaminant. VPHP is capable of achieving sterilization (probability of nonsterility of less than one in a million) when process conditions so dictate and if the target of sterilization is suitably configured. However, VPHP is also commonly used as a surface decontaminating agent in the treatment of sterility testing, biological and chemical containment, manufacturing isolators, and clean rooms.
Surface decontamination is a process that is distinct from sterilization of product contact materials, container-closure systems, or product. It is a process designed to render an environment free of detectable or recoverable microorganisms. Biological indicators are widely used to verify the efficacy of the decontamination process. However, in the case of decontamination, a spore log reduction value of three to four is adequate because the goal is decontamination rather than sterilization.
Table 1. Typical Characteristics for Commercially Supplied Biological Indicator Systems
Sterilization Mode Example of a Typical D value (minutes) Range of D values for Selecting a Suitable Biological Indicator
(minutes) Limits for a Suitable Resistance (depending on the particular D value [minutes])
Survival Time Kill Time
Dry heata 1.9 Min. 1.0 Min. 4.0 10.0
160 Max. 3.0 Max. 14.0 32.0
Ethylene oxideb
600 mg per liter 3.5 Min. 2.5 Min. 10.0 25.0
54 Max. 5.8 Max. 27.0 68.0
60% relative humidity
Moist Heatc 1.9 Min. 1.5 Min. 4.5 13.5
121 Max. 3.0 Max. 14.0 32.0
a For 1.0 × 106 to 5.0 × 106 spores per carrier.
b For 1.0 × 106 to 5.0 × 107 spores per carrier.
c For 1.0 × 105 to 5.0 × 106 spores per carrier.
Bacillus stearothermophilus is the most prevalently used biological indicator for validating VPHP. Other microorganisms that may be useful as biological indicators in VPHP processes are spores of Bacillus subtilis and Clostridium sporogenes. Other microorganisms may be considered if their performance responses to VPHP are similar to those of the microorganisms cited above.
These spores may be inoculated on the surface of various gas-impervious carrier systems having glass, metal, or plastic surfaces. Highly absorbent surfaces, such as fibrous substrates, or any other substrate that readily absorbs VPHP or moisture may adversely influence the VPHP concentration available for inactivation of inoculated microorganisms. Paper substrates are not used because VPHP will degrade cellulose-based materials.
For representative characteristics of commercially supplied biological indicators, see Table 1.
The biological indicator may also be individually packaged in a suitable primary overwrap package that does not adversely affect the performance of the indicator, and is penetrable by VPHP. Spunbound polyolefin materials have proven to be well suited as an overwrap of biological indicators intended for use in evaluation of VPHP processes. The overwrap material may facilitate laboratory handling of the biological indicators following exposure to VPHP. Also, the use of an overwrap material to package VPHP biological indicators must be carefully assessed to ensure that, following VPHP exposure, residual hydrogen peroxide is not retained by the packaging material, possibly inducing bacteriostasis during the recovery steps. Microbial D values will be influenced by the presence of a biological indicator overwrap material relative to the rate of inactivation and the potential presence of residual VPHP. In cases where biological indicators (inoculated carriers) are being used without the primary package, stringent adherence to aseptic techniques is required.

PERFORMANCE EVALUATION
Manufacturer's Responsibility
The initial responsibility for determining and providing to the users the performance characteristics of a biological indicator1 lot resides with the manufacturer of biological indicators. The manufacturer should provide with each lot of biological indicators a certificate of analysis that attests to the validity of biological indicator performance claims cited on the biological indicator package label or in the package insert of the label package. The manufacturer should define the sterilization process that the biological indicator will be used to evaluate. The characterization of each type of biological indicator, which provides the basis for label claims, should be performed initially by the manufacturer of the biological indicator using specialized and standardized apparatus under precisely defined conditions.1 The manufacturer should also provide information concerning the D value, the method by which the D value was determined, and microbial count and resistance stability of the biological indicator throughout the labeled shelf life of the indicator. Optimum storage conditions should be provided by the manufacturer, including temperature, relative humidity, and any other requirements for controlled storage. The data obtained from the various required performance assays should be cited in a package insert or on the label of the biological indicator package. The manufacturer should provide directions for use, including the medium and conditions to be used for the recovery of microorganisms after exposure to the sterilization process. Disposal instructions should also be provided by the manufacturer of the biological indicator.
User's Responsibility
Commercial Product— When biological indicators are purchased from a commercial source, their suitability for use in a specific sterilization process should be established through developmental sterilization studies unless existing data are available to support their use in the process. The user should establish in-house acceptance standards for biological indicator lots and consider rejection in the event the biological indicator lot does not meet the established in-house performance standards. A Certificate of Performance should be obtained for each lot of indicators, and the user should routinely perform audits of the manufacturer's facilities and procedures. If certificates are not obtained and audits have not been performed, or if the biological indicators are to be used outside of the manufacturer's label claims, verification and documentation of performance under conditions of use must exist.
Upon initial receipt of the biological indicator from a commercial supplier, the user should verify the purity and morphology of the purchased biological indicator microorganisms. Verification of at least the proper genus is desirable. Also, a microbial count to determine the mean count per biological indicator unit should be conducted. The manufacturer's comments relative to D value range, storage conditions, expiration dating, and stability of the biological indicator should be observed and noted. The user may consider conducting a D value assessment before acceptance of the lot. Laboratories that have the capability of performing D value assays could conduct a D value determination using one of the three methods cited in the general test chapter Biological Indicators—Resistance Performance Tests 55 and in the appropriate USP monographs for specific biological indicators. Particularly important is the verification of the D value and count stability of the biological indicator system if long-term storage is employed.
In the event the spore crop is maintained for longer than 12 months under documented storage conditions, both spore count and resistance analysis must be conducted, unless performance of an original parent crop has been validated for a longer storage period. The result of spore count and resistance assays should be within the range of acceptability established during initial acceptance of the spore crop lot.
Noncommercial Product— A user of biological indicator systems may elect to propagate microorganisms for developing in-house biological indicators to develop or validate sterilization processes. In the event a user becomes a “manufacturer” of biological indicators, biological indicator performance requirements must be met. If the biological indicator system is used for the development of new sterilization processes or validation of existing processes, the same performance criteria described for commercial manufacturers of biological indicators must be followed.
Spore Crop Preparation
Because most biological indicators use microbial spores, accurate records of spore crop identification must be maintained by commercial and noncommercial biological indicator manufacturers. These records should include records pertaining to the source of the initial culture, identification, traceability to the parent spore crop, subculture frequency, media used for sporulation, changes in media preparation, any observation of crop contamination, and pre- and post-heat shock data. Records of usage of the spore crop and resistance to sterilization (namely, D values and z values where applicable) should also be maintained.
Instrumentation
The instrumentation used to evaluate the sterilization resistance of spore crops must be consistent with existing standards2 related to the performance evaluation of biological indicator systems.
Equipment for the determination of D values of microorganisms exposed to VPHP should be able to closely control equipment operating parameters as described for other biological indicator systems under Biological Indicators—Resistance Performance Tests 55. Particularly important is the assurance of a consistently reproducible VPHP concentration, delivered within a finite time, and maintained within a specified concentration range or VPHP pressure range for a defined increment of time. Introduction of biological indicators into a stabilized concentration of VPHP conditions should be via a system that permits rapid entry and removal of the test units from the chamber. Also, the design of the test chamber should allow for the attainment of steady-state VPHP concentrations and pressure, or the use of a defined amount of cubic feet of free flowing VPHP at a standardized pressure and temperature. Currently, VPHP concentration measurement devices may not be widely used. Therefore, exposure conditions may need to be based on the maintenance of steady-state VPHP pressures or flow rates resulting from a known initial weight of hydrogen peroxide, admitted to the chamber in a defined unit of time. Using this information, together with the known fixed volume of the chamber environment, a calculation of the approximate VPHP concentration can be made. If conditions are maintained constant throughout each D value assessment run, comparisons of relative resistance among different biological indicator lots may be readily determined.

USE FOR IN-PROCESS VALIDATION
Regardless of the mode of sterilization, the amount of the initial population of the microorganisms, its resistance to sterilization, and the site of inoculation on or in the product can all influence the rate of biological indicator inactivation.
During product microbial challenges, various areas of the product should be inoculated with biological indicators. If, for example, a container with a closure system is sterilized, both the product solution and the closure should be challenged to ensure that sterilization equivalent to a 106 (one in a million probability of a nonsterile unit) sterilization assurance level (SAL) will be obtained in the solution as well as at the closure site.
One may need to determine through laboratory studies whether product components are more difficult to sterilize than, for example, a solution or drug within the product. Depending on the locations of the product components most difficult to sterilize, different process parameters may be involved in assuring microbial inactivation to an SAL of 106. The product performance qualification phase should identify the most important process parameters for inactivation of microorganisms at the sites most difficult to sterilize. Once these critical processing parameters are determined, during sterilization in-process validation of the product, they should be operated at conditions less than the conditions stated in the sterilization process specifications. Biological indicator survival is predicated upon both resistance and population. Therefore, a 106 biological indicator population is not always required to demonstrate a 106 SAL. The appropriate use for biological indicators is to employ them to confirm that the developed process parameters result in the desired SAL. In moist heat sterilization, the biological indicator is used to establish that physically measured lethality can be verified biologically. Biological indicators with substantive D values and populations substantially less than 106 are adequate to validate many sterilization and decontamination processes. It is important that the users be able to scientifically justify their selection of a biological indicator.
1 See Apparatus under Biological Indicators—Resistance Performance Tests 55. These apparatuses have been designed to provide consistent physical conditions applicable to the characterization of biological indicators. The required performance characteristics are also indicated.
2 BIER/Steam Vessels, American National Standards, ANSI/AAMI ST45:1992.

 

EuropeanPharmacopoeia 2019,10th Edition Vol 1

https://www.doc88.com/p-80299802134883.html

 

EuropeanPharmacopoeia 2019,10th Edition VOL.1(欧洲药典第10版,第一卷 第一部分)

 

www.doc88.com

 

 

소음 확인

산업안전보건기준에 관한 규칙(고용노동부령)(제00337호)(20211119)

제4장 제512조 

728x90
반응형

'GMP 밸리데이션 정보' 카테고리의 다른 글

정제수라인 3D, 6D rule/deag leg  (0) 2022.04.05
동결건조기 작성일과 승인일  (0) 2022.03.25
바이알  (0) 2022.03.18
PeakTech 8005 소음계  (0) 2022.03.07
밸리데이션  (0) 2022.02.21

댓글